यदि  एक समान्तर श्रेणी के प्रथम $n$ पदों का योग उसके प्रथम $m$ पदों के योग के बराबर हो $(m \ne n)$, तो उसके $(m + n)$ पदों का योग होगा

  • A

    $0$

  • B

    $n$

  • C

    $m$

  • D

    $m + n$

Similar Questions

यदि श्रेणी $\sqrt{3}+\sqrt{75}+\sqrt{243}+\sqrt{507}+\ldots$ के प्रथम $n$ पदों का योग $435 \sqrt{3}$ है, तो $n$ बराबर है

  • [JEE MAIN 2017]

किसी समांतर श्रेढ़ी में पदों की संख्या सम है। इसके विषम पदों का योग $24$ है तथा सम पदों का योग $30$ है। यदि अंतिम पद, प्रथम पद से $10 \frac{1}{2}$ अधिक है, तो समांतर श्रेढ़ी में पदों की संख्या है

  • [JEE MAIN 2014]

धनपूर्णांक के $5-$ टुपल्स $(tuples)$ $(a, b, c, d, e)$, इस प्रकार हैं कि

$I$. $a, b, c, d, e$ उत्तल पंचकोण $(Convex\,pentagon)$ के डिग्री में कोणों के माप हैं ।

$II$. $a \leq b \leq c \leq d \leq e$

$III$. $a, b, c, d, e$ अंकगणितीय श्रेढ़ी मे हैं ।

ऐसे कितने $5-$ टुपल्स सभव है ?

  • [KVPY 2017]

यदि एक समान्तर श्रेणी का $10^{\text {th }}$ वां पद $\frac{1}{20}$ है तथा इसका $20^{\text {th }}$ वां पद $\frac{1}{10}$ है, तो इसके प्रथम $200$ पदों का योग है

  • [JEE MAIN 2020]

निम्नलिखित अनुक्रम में वांधित पद ज्ञात कीजिए, जिनका $n$ वाँ पर दिया गया है

$a_{n}=4 n-3 ; a_{17}, a_{24}$