If the sum of squares of all real values of $\alpha$, for which the lines $2 x-y+3=0,6 x+3 y+1=0$ and $\alpha x+2 y-2=0$ do not form a triangle is $p$, then the greatest integer less than or equal to $\mathrm{p}$ is $.........$
$35$
$33$
$34$
$32$
Statement $-1$ : The system of linear equations
$x + \left( {\sin \,\alpha } \right)y + \left( {\cos \,\alpha } \right)z = 0$
$x + \left( {\cos \,\alpha } \right)y + \left( {\sin \alpha } \right)z = 0$
$x - \left( {\sin \,\alpha } \right)y - \left( {\cos \alpha } \right)z = 0$
has a non-trivial solution for only one value of $\alpha $ lying in the interval $\left( {0\,,\,\frac{\pi }{2}} \right)$
Statement $-2$ : The equation in $\alpha $
$\left| {\begin{array}{*{20}{c}}
{\cos {\mkern 1mu} \alpha }&{\sin {\mkern 1mu} \alpha }&{\cos {\mkern 1mu} \alpha } \\
{\sin {\mkern 1mu} \alpha }&{\cos {\mkern 1mu} \alpha }&{\sin {\mkern 1mu} \alpha } \\
{\cos {\mkern 1mu} \alpha }&{ - \sin {\mkern 1mu} \alpha }&{ - \cos {\mkern 1mu} \alpha }
\end{array}} \right| = 0$
has only one solution lying in the interval $\left( {0\,,\,\frac{\pi }{2}} \right)$
If $a,b,c$ and $d $ are complex numbers, then the determinant $\Delta = \left| {\,\begin{array}{*{20}{c}}2&{a + b + c + d}&{ab + cd}\\{a + b + c + d}&{2(a + b)(c + d)}&{ab(c + d) + cd(a + b)}\\{ab + cd}&{ab(c + d) + cd(a + d)}&{2abcd}\end{array}} \right|$is
If the system of linear equations $x+y+3 z=0$
$x+3 y+k^{2} z=0$
$3 x+y+3 z=0$
has a non-zero solution $(x, y, z)$ for some $k \in R ,$ then $x +\left(\frac{ y }{ z }\right)$ is equal to
If $C = 2\cos \theta $, then the value of the determinant $\Delta = \left| {\,\begin{array}{*{20}{c}}C&1&0\\1&C&1\\6&1&C\end{array}\,} \right|$ is