If the sum of squares of all real values of $\alpha$, for which the lines $2 x-y+3=0,6 x+3 y+1=0$ and $\alpha x+2 y-2=0$ do not form a triangle is $p$, then the greatest integer less than or equal to $\mathrm{p}$ is $.........$

  • [JEE MAIN 2024]
  • A

    $35$

  • B

    $33$

  • C

    $34$

  • D

    $32$

Similar Questions

Statement $-1$ : The system of linear equations

$x + \left( {\sin \,\alpha } \right)y + \left( {\cos \,\alpha } \right)z = 0$

$x + \left( {\cos \,\alpha } \right)y + \left( {\sin \alpha } \right)z = 0$

$x - \left( {\sin \,\alpha } \right)y - \left( {\cos \alpha } \right)z = 0$

has a non-trivial solution for only one value of $\alpha $ lying in the interval $\left( {0\,,\,\frac{\pi }{2}} \right)$ 

Statement $-2$ : The equation in $\alpha $

$\left| {\begin{array}{*{20}{c}}
  {\cos {\mkern 1mu} \alpha }&{\sin {\mkern 1mu} \alpha }&{\cos {\mkern 1mu} \alpha } \\ 
  {\sin {\mkern 1mu} \alpha }&{\cos {\mkern 1mu} \alpha }&{\sin {\mkern 1mu} \alpha } \\ 
  {\cos {\mkern 1mu} \alpha }&{ - \sin {\mkern 1mu} \alpha }&{ - \cos {\mkern 1mu} \alpha } 
\end{array}} \right| = 0$

has only one solution lying in the interval $\left( {0\,,\,\frac{\pi }{2}} \right)$

  • [JEE MAIN 2013]

If $a,b,c$ and $d $ are complex numbers, then the determinant $\Delta = \left| {\,\begin{array}{*{20}{c}}2&{a + b + c + d}&{ab + cd}\\{a + b + c + d}&{2(a + b)(c + d)}&{ab(c + d) + cd(a + b)}\\{ab + cd}&{ab(c + d) + cd(a + d)}&{2abcd}\end{array}} \right|$is

If the system of linear equations $x+y+3 z=0$

$x+3 y+k^{2} z=0$

$3 x+y+3 z=0$

has a non-zero solution $(x, y, z)$ for some $k \in R ,$ then $x +\left(\frac{ y }{ z }\right)$ is equal to

  • [JEE MAIN 2020]

If $C = 2\cos \theta $, then the value of the determinant $\Delta = \left| {\,\begin{array}{*{20}{c}}C&1&0\\1&C&1\\6&1&C\end{array}\,} \right|$ is

The system of equations $(\sin\theta ) x + 2z = 0$ , $(\cos\theta ) x + (\sin\theta )y = 0$ , $(\cos\theta )y + 2z = a$ has