3 and 4 .Determinants and Matrices
medium

माना $\alpha$ के सभी वास्तविक मानों, जिनके लिए रेखाएँ $2 x-y+3=0,6 x+3 y+1=0$ तथा $\alpha x+2 y-2=0$ एक त्रिभुज नहीं बनाती है, के वर्गों का योग $\mathrm{p}$ है, तो महत्तम पूर्णांक $\leq \mathrm{p}$ है .......।

A

$35$

B

$33$

C

$34$

D

$32$

(JEE MAIN-2024)

Solution

$2 x-y+3=0 $

$ 6 x+3 y+1=0 $

$ \alpha x+2 y-2=0$

Will not form a $\Delta$ if $\alpha x+2 y-2=0$ is concurrent with $2 x-y+3=0$ and $6 x+3 y+1=0$ or parallel to either of them so

Case-$1$: Concurrent lines

$\left|\begin{array}{ccc}2 & -1 & 3 \\ 6 & 3 & 1 \\ \alpha & 2 & -2\end{array}\right|=0 \Rightarrow \alpha=\frac{4}{5}$

Case-$2$ : Parallel lines

$ -\frac{\alpha}{2}=\frac{-6}{3} \text { or }-\frac{\alpha}{2}=2 $

$ \Rightarrow \alpha=4 \text { or } \alpha=-4 $

$ P=16+16+\frac{16}{25} $

$ {[\mathrm{P}]=\left[32+\frac{16}{25}\right]=32}$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.