જો ${(x - 2y + 3z)^n}$ ના સહગુણકોનો સરવાળો $128$ હોય તો ${(1 + x)^n}$ ના વિસ્તરણમાં મહતમ સહગુણક મેળવો.

  • A

    $35$

  • B

    $20$

  • C

    $10$

  • D

    એકપણ નહિ.

Similar Questions

$\left( {\begin{array}{*{20}{c}}{20}\\0\end{array}} \right) - \left( {\begin{array}{*{20}{c}}{20}\\1\end{array}} \right)$$+$$\left( {\begin{array}{*{20}{c}}{20}\\2\end{array}} \right) - \left( {\begin{array}{*{20}{c}}{20}\\3\end{array}} \right)$$+…..-……+$$\left( {\begin{array}{*{20}{c}}{20}\\{10}\end{array}} \right)$ નો સરવાળો. 

  • [AIEEE 2007]

 $(1 +x)^{101}  (1 +x^2 - x)^{100}$ ના વિસ્તરણમાં પદની સંખ્યા મેળવો.

  • [JEE MAIN 2014]

$\left( {\begin{array}{*{20}{c}}n\\0\end{array}} \right) + 2\,\left( {\begin{array}{*{20}{c}}n\\1\end{array}} \right) + {2^2}\left( {\begin{array}{*{20}{c}}n\\2\end{array}} \right) + ..... + {2^n}\left( {\begin{array}{*{20}{c}}n\\n\end{array}} \right)=$  . . .

જો ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .... + {C_n}{x^n}$, તો ${C_0} + 2{C_1} + 3{C_2} + .... + (n + 1){C_n}$ = . . .

  • [IIT 1971]

${C_0}{C_r} + {C_1}{C_{r + 1}} + {C_2}{C_{r + 2}} + .... + {C_{n - r}}{C_n}$=