In the binomial expansion of ${(a - b)^n},\,n \ge 5,$ the sum of the $5^{th}$ and $6^{th}$ terms is zero. Then $\frac{a}{b}$  is equal to

  • [IIT 2001]
  • A

    $\frac{1}{6}(n - 5)$

  • B

    $\frac{1}{5}(n - 4)$

  • C

    $\frac{5}{{(n - 4)}}$

  • D

    $\frac{6}{{(n - 5)}}$

Similar Questions

Find the middle terms in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$

If $\left(\frac{3^{6}}{4^{4}}\right) \mathrm{k}$ is the term, independent of $\mathrm{x}$, in the binomial expansion of $\left(\frac{\mathrm{x}}{4}-\frac{12}{\mathrm{x}^{2}}\right)^{12}$, then $\mathrm{k}$ is equal to ...... .

  • [JEE MAIN 2021]

The coefficient of ${x^{32}}$ in the expansion of ${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ is

In the expansion of ${\left( {2{x^2} - \frac{1}{x}} \right)^{12}}$, the term independent of x is

Find the expansion of $\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$ using binomial theorem