7.Binomial Theorem
normal

જો $(x - 2y + 3 z)^n,$ $n \in N$ ના વિસ્તરણમાં બધા સહગુણકોનો સરવાળો $128$ હોય તો $(1 + x)^n$ ના વિસ્તરણમાં મહત્તમ સહગુણક મેળવો 

A

$35$

B

$20$

C

$10$

D

$15$

Solution

Sum of the coefficient in the expansion

${\left( {x – 2{\rm{ }}y + 3{\rm{ }}z} \right)^n}$ is $(1-2+3)^{n}=2^{n}$

i.e. $2^{n}=128 \Rightarrow n=7$

therefore, greatest coefficient in the expansion of $(1+\mathrm{x})^{7}$ is $^{7} \mathrm{C}_{3}$ ór $^{7} \mathrm{C}_{4}$ 

$^{7} \mathrm{C}_{3}=^{7} \mathrm{C}_{4}=35$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.