3 and 4 .Determinants and Matrices
hard

If the system of equation $2 x+\lambda y+3 z=5$, $3 x+2 y-z=7$, $4 x+5 y+\mu z=9$ has infinitely many solutions, then $\left(\lambda^2+\mu^2\right)$ is equal to :

A$22$
B$18$
C$26$
D$30$
(JEE MAIN-2025)

Solution

$\Delta=0 \Rightarrow\left|\begin{array}{ccc}2 & \lambda & 3 \\ 3 & 2 & -1 \\ 4 & 5 & \mu\end{array}\right|=0$
$\Rightarrow 2(2 \mu+5)+\lambda(-4-3 \mu)+3(7)=0$
$\Rightarrow 4 \mu-3 \lambda \mu-4 \lambda+31=0 \ldots \ldots .(1)$
$\Delta_3=0 \Rightarrow\left|\begin{array}{lll}2 & \lambda & 5 \\ 3 & 2 & 7 \\ 4 & 5 & 9\end{array}\right|=0$
$\Rightarrow 2(-17)+\lambda(1)+5(7)=0$
$\Rightarrow \lambda=-1$
from equation $(1)$
$4 \mu+3 \mu+4+31=0 \Rightarrow \mu=-5$
$\therefore \lambda^2+\mu^2=26$
Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.