यदि निकाय के समीकरणों $x - ky - z = 0$, $kx - y - z = 0$ तथा $x + y - z = 0$ का एक अशून्य हल है, तो $ k $ के संभावित मान होंगे
$-1, 2$
$1, 2$
$0, 1$
$-1, 1$
$\alpha$ के लिए वह मान, जिनके लिए $\left|\begin{array}{ccc}1 & \frac{3}{2} & \alpha+\frac{3}{2} \\ 1 & \frac{1}{3} & \alpha+\frac{1}{3} \\ 2 \alpha+3 & 3 \alpha+1 & 0\end{array}\right|=0$ है, किस अंतराल में है ?
$\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right| = $
यदि समीकरणों के निकाय $\begin{array}{l}\alpha x + y + z = \alpha - 1\\x + \alpha y + z = \alpha - 1\\x + y + \alpha z = \alpha - 1\end{array}$ का कोई हल नहीं है, तब $\alpha $ का मान है
यदि रैखिक समीकरण निकाय $x + y + z =5$, $x +2 y +2 z =6$, $x +3 y +\lambda z =\mu,(\lambda, \mu \in R )$ के अनन्त हल है, तो $\lambda+\mu$ का मान है
यदि रेखीय समीकरणों के निकाय $2 x-3 y=\gamma+5$ $\alpha x +5 y =\beta+1$, जहाँ $\alpha, \beta, \gamma \in R$ के अनन्त हल ह, तो $|9 \alpha+3 \beta+5 \gamma|$ का मान है