જો સમીકરણ સંહતિ
$2 x+y-z=5$
$2 x-5 y+\lambda z=\mu$
$x+2 y-5 z=7$
ને અસંખ્ય ઉકેલો હોય,તો
$(\lambda+\mu)^2+(\lambda-\mu)^2=........$
$916$
$912$
$920$
$904$
જો $a_1,a_2,a_3,....,a_{10}$ એ સમગુણોતર શ્રેણીમાં છે કે જ્યાં $i = 1, 2,....,10$ માટે $a_i > 0$ છે અને $S$ એ $(r,k), r, k \in N$ ની જોડ પરનો ગણછે જેથી
$\left| {\begin{array}{*{20}{c}} {{{\log }_e}\,a_1^ra_2^k}&{{{\log }_e}\,a_2^ra_3^k}&{{{\log }_e}\,a_3^ra_4^k} \\ {{{\log }_e}\,a_4^ra_5^k}&{{{\log }_e}\,a_5^ra_6^k}&{{{\log }_e}\,a_6^ra_7^k} \\ {{{\log }_e}\,a_7^ra_8^k}&{{{\log }_e}\,a_8^ra_9^k}&{{{\log }_e}\,a_9^ra_{10}^k}\end{array}} \right| = 0 $
તો ગણ $S$ માં રહેલા ઘટકોની સંખ્યા મેળવો.
જો $A = \left[ {\begin{array}{*{20}{c}}\alpha &2\\2&\alpha \end{array}} \right]$ અને $|{A^3}|$=125, તો $\alpha = $
$\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{1 - x}&1\\1&1&{1 + y}\end{array}\,} \right|$ = . . .
$\left| {\,\begin{array}{*{20}{c}}{{{\sin }^2}x}&{{{\cos }^2}x}&1\\{{{\cos }^2}x}&{{{\sin }^2}x}&1\\{ - 10}&{12}&2\end{array}\,} \right| = $
$\left| {\begin{array}{*{20}{c}}
1&x&y\\
2&{\sin x + 2x}&{\sin y + 2y}\\
3&{\cos x + 3x}&{\cos y + 3y}
\end{array}} \right|$ મેળવો.