If the system of linear equations $2 x + y - z =7$ ; $x-3 y+2 z=1$ ; $x +4 y +\delta z = k$, where $\delta, k \in R$ has infinitely many solutions, then $\delta+ k$ is equal to
$-3$
$3$
$6$
$9$
Find values of $\mathrm{k}$ if area of triangle is $4$ square units and vertices are $(-2,0),(0,4),(0, \mathrm{k})$
How many values of $k $ , systeam of linear equations $\left( {k + 1} \right)x + 8y = 4k\;,\;kx + \left( {k + 3} \right)y$$ = 3k - 1$ has no solutions.
If ${a_1},{a_2},{a_3}.....{a_n}....$ are in $G.P.$ then the value of the determinant $\left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}}\\{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}\end{array}\,} \right|$ is
If $2x + 3y - 5z = 7, \,x + y + z = 6$, $3x - 4y + 2z = 1,$ then $x =$
Let $S$ be the set of all values of $\theta \in[-\pi, \pi]$ for which the system of linear equations
$x+y+\sqrt{3} z=0$
$-x+(\tan \theta) y+\sqrt{7} z=0$
$x+y+(\tan \theta) z=0$
has non-trivial solution. Then $\frac{120}{\pi} \sum_{\theta \in s} \theta$ is equal to