3 and 4 .Determinants and Matrices
hard

If $a > 0$and discriminant of $a{x^2} + 2bx + c$is negative, then $\left| {\,\begin{array}{*{20}{c}}a&b&{ax + b}\\b&c&{bx + c}\\{ax + b}&{bx + c}&0\end{array}\,} \right|$ is

A

Positive

B

$(ac - {b^2})(a{x^2} + 2bx + c)$

C

Negative

D

$0$

(AIEEE-2002)

Solution

(c) Let $\Delta = \,\left| {\,\begin{array}{*{20}{c}}a&b&{ax + b}\\b&c&{bx + c}\\{ax + b}&{bx + c}&0\end{array}\,} \right|$

Applying ${R_3} \to {R_3} – x{R_1} – {R_2};$ we get

$\Delta = \,\left| {\,\begin{array}{*{20}{c}}a&b&{ax + b}\\b&c&{bx + c}\\0&0&{ – (a{x^2} + 2bx + c)}\end{array}} \right|\,$

$\Delta = ({b^2} – ac)\,(a{x^2} + 2bx + c)$

Now, ${b^2} – ac < 0$ and $a > 0$

==> Discriminant of $a{x^2} + 2bx + c$ is -ve and $a > 0$

==> $(a{x^2} + 2bx + c) > 0$ for all $x \in R$

==> $\Delta = ({b^2} – ac)\,(a{x^2} + 2bx + c) < 0$, i.e.-ve.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.