The value of the determinant $\left| {\,\begin{array}{*{20}{c}}{10!}&{11!}&{12!}\\{11!}&{12!}&{13!}\\{12!}&{13!}&{14!}\end{array}\,} \right|$ is

  • A

    $2\,(10!\,\,11!)$

  • B

    $2\,(10\,!\,\,13\,!)$

  • C

    $2\,(10!\,\,11!\,\,12!)$

  • D

    $2\,(11\,!\,\,12!\,\,13!)$

Similar Questions

If $B$ is a $3 \times 3$ matrix such that $B^2 = 0$, then det. $[( I+ B)^{50} -50B]$ is equal to

  • [JEE MAIN 2014]

The sum of the real roots of the equation $\left| {\begin{array}{*{20}{c}}
x&{ - 6}&{ - 1}\\
2&{ - 3x}&{x - 3}\\
{ - 3}&{2x}&{x = 2}
\end{array}} \right| = 0$ is equal to

  • [JEE MAIN 2019]

Let $A = \left[ {\begin{array}{*{20}{c}}
  2&b&1 \\ 
  b&{{b^2} + 1}&b \\ 
  1&b&2 
\end{array}} \right]$  where $b > 0$. Then the minimum value of $\frac{{\det \left( A \right)}}{b}$ is

  • [JEE MAIN 2019]

The roots of the equation $\left| {\,\begin{array}{*{20}{c}}{x - 1}&1&1\\1&{x - 1}&1\\1&1&{x - 1}\end{array}\,} \right| = 0$  are

The set of all values of $\lambda $ for which the system of linear equations $x - 2y - 2z = \lambda x$ ; $x + 2y + z = \lambda y$ ; $-x - y = \lambda z$ has non zero solutions.

  • [JEE MAIN 2019]