If the system of linear equations $x + y + z = 5$ ; $x = 2y + 2z = 6$ ; $x + 3y + \lambda z = u (\lambda \, \mu \in R)$, has infinitely many solutions then the value of $\lambda + \mu $ is
$12$
$7$
$10$
$9$
Let $\lambda \in R .$ The system of linear equations
$2 x_{1}-4 x_{2}+\lambda x_{3}=1$
$x_{1}-6 x_{2}+x_{3}=2$
$\lambda x_{1}-10 x_{2}+4 x_{3}=3$ is inconsistent for
If $\alpha \neq \mathrm{a}, \beta \neq \mathrm{b}, \gamma \neq \mathrm{c}$ and $\left|\begin{array}{lll}\alpha & \mathrm{b} & \mathrm{c} \\ \mathrm{a} & \beta & \mathrm{c} \\ \mathrm{a} & \mathrm{b} & \gamma\end{array}\right|=0$,then $\frac{a}{\alpha-a}+\frac{b}{\beta-b}+\frac{\gamma}{\gamma-c}$ is equal to :
Find equation of line joining $(3,1)$ and $(9,3)$ using determinants
The number of solutions of equations $x + y - z = 0$, $3x - y - z = 0, \,x - 3y + z = 0$ is
The value of the determinant given below $\left| {{\rm{ }}\begin{array}{*{20}{c}}1&2&3\\3&5&7\\8&{14}&{20}\end{array}} \right|$ is