Gujarati
3 and 4 .Determinants and Matrices
medium

Let $\alpha, \beta$ and $\gamma$ be real numbers such that the system of linear equations

$x+2 y+3 z=\alpha$

$4 x+5 y+6 z=\beta$

$7 x+8 y+9 z=\gamma-$

is consistent. Let $| M |$ represent the determinant of the matrix

$M=\left[\begin{array}{ccc}\alpha & 2 & \gamma \\ \beta & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$

Let $P$ be the plane containing all those $(\alpha, \beta, \gamma)$ for which the above system of linear equations is consistent, and $D$ be the square of the distance of the point $(0,1,0)$ from the plane $P$.

($1$) The value of $| M |$ is

($2$) The value of $D$ is

A

$1,1.5$

B

$1,1.6$

C

$1,1.7$

D

$1,1.8$

(IIT-2021)

Solution

$7 x+8 y+9 z-(\gamma-1)=A(4 x+5 y+6 z-\beta)+B(x+2 y+3 z-\alpha)$

$x: 7=4 A+B$

$y: 8=5 A+2 B$

$A=2, B=-1$

$\text { const. term : }-(\gamma-1)=-A \beta-\alpha B \Rightarrow-(\gamma-1) \equiv 2 \beta+\alpha \alpha-2 \beta+\gamma=1$

$M=\left(\begin{array}{ccc}\alpha & 2 & \gamma \\ \beta & 1 & 0 \\ -1 & 0 & 1\end{array}\right)=\alpha-2 \beta+\gamma=1$

Plane $P : x -2 y + z =1$

$\text { Perpendicular distance }=\left|\frac{3}{\sqrt{6}}\right|= P \Rightarrow D = P ^2=\frac{9}{6}=1.5$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.