यदि निम्न रैखिक समीकरण निकाय $2 x+2 a y+a z=0$, $2 x+3 b y+b z=0$, $2 x+4 c y+c z=0$ जहाँ $a , b , c \in R$ विभिन्न शून्येतर वास्तविक संख्याएँ है; का एक शून्येतर हल है, तो

  • [JEE MAIN 2020]
  • A

    $a , b , c$ समान्तर श्रेढी में है

  • B

    $a + b + c = 0$

  • C

    $a , b , c$ गुणोत्तर श्रेढी में हैं।

  • D

    $\frac{1}{ a }, \frac{1}{ b }, \frac{1}{ c }$ समान्तर श्रेढी में है।

Similar Questions

$\left| {\,\begin{array}{*{20}{c}}{1/a}&{{a^2}}&{bc}\\{1/b}&{{b^2}}&{ca}\\{1/c}&{{c^2}}&{ab}\end{array}\,} \right| = $

सारणिकों का मान ज्ञात कीजिए:

$\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$

$k$  के किस मान के लिये समीकरण निकाय $x + ky - z = 0,3x - ky - z = 0$ व $x - 3y + z = 0$ का एक अशून्य हल होगा

  • [IIT 1988]

$\left| {\,\begin{array}{*{20}{c}}{bc}&{bc' + b'c}&{b'c'}\\{ca}&{ca' + c'a}&{c'a'}\\{ab}&{ab' + a'b}&{a'b'}\end{array}\,} \right|$ =

यदि $S\, 'b'$ की उन विभिन्न मानों का समुच्चय है जिनके लिए निम्न रैखिक समीकरण निकाय

$x+y+z=1$

$x+a y+z=1$

$a x+b y+z=0$

का कोई हल नहीं है, तो $S$ :

  • [JEE MAIN 2017]