समीकरण $\left| {\,\begin{array}{*{20}{c}}x&0&8\\4&1&3\\2&0&x\end{array}\,} \right| = 0$ के मूल हैं
$( - 4,\,4)$
$(2,\, - 4)$
$(2,\,4)$
$(2,\,8)$
यदि समीकरणों के निकाय $\begin{array}{l}\alpha x + y + z = \alpha - 1\\x + \alpha y + z = \alpha - 1\\x + y + \alpha z = \alpha - 1\end{array}$ का कोई हल नहीं है, तब $\alpha $ का मान है
$\left| {\,\begin{array}{*{20}{c}}{{{({a^x} + {a^{ - x}})}^2}}&{{{({a^x} - {a^{ - x}})}^2}}&1\\{{{({b^x} + {b^{ - x}})}^2}}&{{{({b^x} - {b^{ - x}})}^2}}&1\\{{{({c^x} + {c^{ - x}})}^2}}&{{{({c^x} - {c^{ - x}})}^2}}&1\end{array}\,} \right| = $
$\lambda$ तथा $\mu$ के वे मान जिनके लिए समीकरण निकाय $x+y+z=6,3 x+5 y+5 z=26, x+2 y+\lambda z=\mu$ का कोई हल नहीं हैं,
यदि $\left| {\,\begin{array}{*{20}{c}}{x + 1}&3&5\\2&{x + 2}&5\\2&3&{x + 4}\end{array}\,} \right| = 0$,तो समीकरण $x =$
यदि $\left| {\,\begin{array}{*{20}{c}}{{x^2} + x}&{x + 1}&{x - 2}\\{2{x^2} + 3x - 1}&{3x}&{3x - 3}\\{{x^2} + 2x + 3}&{2x - 1}&{2x - 1}\end{array}\,} \right| = Ax - 12$, तो $ A$ का मान है