જો સુરેખ સમીકરણોની સંહતિ  $2 \mathrm{x}+2 \mathrm{ay}+\mathrm{az}=0$ ; $2 x+3 b y+b z=0$ ; $2 \mathrm{x}+4 \mathrm{cy}+\mathrm{cz}=0$ ;કે જ્યાં $a, b, c \in R$ એ ભિન્ન શૂન્યતર સંખ્યાઓ હોય તો . . . . 

  • [JEE MAIN 2020]
  • A

    $a, b, c$ એ સમાંતર શ્રેણીમાં છે. 

  • B

    $a + b + c = 0$

  • C

    $a, b, c$ એ સમગુણોતર શ્રેણીમાં છે.

  • D

    $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ એ સમાંતર શ્રેણીમાં છે. 

Similar Questions

ત્રિઘાત સમીકરણ  $\left| {\begin{array}{*{20}{c}}
  0&{a - x}&{b - x} \\ 
  { - a - x}&0&{c - x} \\ 
  { - b - x}&{ - c - x}&0 
\end{array}} \right| = 0$ ના બીજો $x$ માં સમાન હોય તો . . . 

જો $n \ne 3k$ અને 1, $\omega ,{\omega ^2}$ એકના ઘનમૂળ હોય , તો $\Delta = \left| {\,\begin{array}{*{20}{c}}1&{{\omega ^n}}&{{\omega ^{2n}}}\\{{\omega ^{2n}}}&1&{{\omega ^n}}\\{{\omega ^n}}&{{\omega ^{2n}}}&1\end{array}\,} \right|$ ની કિમત મેળવો.

જો ${a^2} + {b^2} + {c^2} + ab + bc + ca \leq 0\,\forall a,\,b,\,c\, \in \,R$ , હોય તો  $\left| {\begin{array}{*{20}{c}}
  {{{(a + b + c)}^2}}&{{a^2} + {b^2}}&1 \\ 
  1&{{{(b + c + 2)}^2}}&{{b^2} + {c^2}} \\ 
  {{c^2} + {a^2}}&1&{{{(c + a + 2)}^2}} 
\end{array}} \right|$ ની કિમત મેળવો.

જો $S$ એ $\lambda \in \mathrm{R}$ ની બધી કિમતોનો ગણ છે કે જ્યાં સુરેખ સંહિતા 

$2 x-y+2 z=2$

$x-2 y+\lambda z=-4$

$x+\lambda y+z=4$

ને એક પણ ઉકેલ ના હોય તો ગણ $S$ માં 

  • [JEE MAIN 2020]

બે પાસાને ઉછાળવામાં આવે છે. તેમની પરના અંકોને  $\lambda$ અને $\mu$ લેવામાં આવે છે અને સમીકરણ સંહતિ 

$x+y+z=5$    ;    $x+2 y+3 z=\mu$   ;     $x+3 y+\lambda z=1$

ને બનાવમાં આવે છે.જો $\mathrm{p}$ એ સમીકરણ સંહતિને એકાકી ઉકેલ હોય તેની સંભાવના દર્શાવે છે અને $\mathrm{q}$ એ સમીકરણ સંહતિનો ઉકેલગણ ખાલીગણ છે તેની સંભાવના દર્શાવે છે તો

  • [JEE MAIN 2021]