- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
If the tangent and normal to a rectangular hyperbola $xy = c^2$ at a variable point cut off intercept $a_1, a_2$ on $x-$ axis and $b_1, b_2$ on $y-$ axis, then $(a_1a_2 + b_1b_2)$ is
A
$2$
B
$\frac {1}{2}$
C
$0$
D
$-1$
Solution
$x y=c^{2}$
$2 x y=2 c^{2}$
$\frac{\mathrm{xc}}{\mathrm{t}}+(\mathrm{ct}) \mathrm{y}=2 \mathrm{c}^{2}(\text { tangent })$
$\frac{\mathrm{x}}{\mathrm{t}}+\mathrm{ty}=2 \mathrm{c}$
$a_{1}=2 c t, \quad b_{1}=\frac{2 c}{t}$
for normal
$ y-\frac{c}{t} =t^{2}(x-c t) $
${a_2} = \left( {ct – \frac{c}{{{t^3}}}} \right)$ and ${b_2} = \left( {\frac{c}{t} – c{t^3}} \right)$
$ a_{1} a_{2}+b_{1} b_{2} =0 $
Standard 11
Mathematics