If the tangent and normal to a rectangular hyperbola $xy = c^2$ at a variable point cut off intercept $a_1, a_2$ on $x-$ axis and $b_1, b_2$ on $y-$ axis, then $(a_1a_2 + b_1b_2)$ is
$2$
$\frac {1}{2}$
$0$
$-1$
The radius of the director circle of the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$, is
Let $H: \frac{-x^2}{a^2}+\frac{y^2}{b^2}=1$ be the hyperbola, whose eccentricity is $\sqrt{3}$ and the length of the latus rectum is $4 \sqrt{3}$. Suppose the point $(\alpha, 6), \alpha>0$ lies on $H$. If $\beta$ is the product of the focal distances of the point $(\alpha, 6)$, then $\alpha^2+\beta$ is equal to :
The values of parameter $'a'$ such that the line $\left( {{{\log }_2}\left( {1 + 5a - {a^2}} \right)} \right)x - 5y - \left( {{a^2} - 5} \right) = 0$ is a normal to the curve $xy = 1$ , may lie in the interval
The tangent to the hyperbola $xy = c^2$ at the point $P$ intersects the $x-$ axis at $T$ and the $y-$ axis at $T'$. The normal to the hyperbola at $P$ intersects the $ x-$ axis at $N$ and the $y-$ axis at $N'$. The areas of the triangles $PNT$ and $PN'T' $ are $ \Delta$ and $ \Delta ' $ respectively, then $\frac{1}{\Delta }\,\, + \,\,\frac{1}{{\Delta '}}\,$ is