Length of latus rectum of hyperbola $\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 4\,is\,\left( {\alpha \ne \frac{{n\pi }}{2},n \in I} \right)$
$2\left| {\frac{{1 - \cos 2\alpha }}{{\cos \alpha }}} \right|$
$\left| {\frac{{1 + \cos 2\alpha }}{{\sin \alpha }}} \right|$
$2\left| {\frac{{1 + \cos 2\alpha }}{{\sin \alpha }}} \right|$
$\left| {\frac{{1 - \cos 2\alpha }}{{\cos \alpha }}} \right|$
The locus of the middle points of the chords of hyperbola $3{x^2} - 2{y^2} + 4x - 6y = 0$ parallel to $y = 2x$ is
The straight line $x + y = \sqrt 2 p$ will touch the hyperbola $4{x^2} - 9{y^2} = 36$, if
Equation of the normal to the hyperbola $\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{{16}} = 1$ perpendicular to the line $2x + y = 1$ is
Let $e_{1}$ and $e_{2}$ be the eccentricities of the ellipse, $\frac{x^{2}}{25}+\frac{y^{2}}{b^{2}}=1(b<5)$ and the hyperbola $\frac{ x ^{2}}{16}-\frac{ y ^{2}}{ b ^{2}}=1$ respectively satisfying $e _{1} e _{2}=1 .$ If $\alpha$ and $\beta$ are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair $(\alpha, \beta)$ is equal to
The equation of the normal at the point $(a\sec \theta ,\;b\tan \theta )$ of the curve ${b^2}{x^2} - {a^2}{y^2} = {a^2}{b^2}$ is