If the tangent on the point $(2\sec \phi ,\;3\tan \phi )$ of the hyperbola $\frac{{{x^2}}}{4} - \frac{{{y^2}}}{9} = 1$ is parallel to $3x - y + 4 = 0$, then the value of $\phi$ is ............ $^o$

  • A

    $45$

  • B

    $60$

  • C

    $30$

  • D

    $75$

Similar Questions

The latus-rectum of the hyperbola $16{x^2} - 9{y^2} = $ $144$, is

If the line $y\, = \,mx\, + \,7\sqrt 3 $ is normal to the hyperbola $\frac{{{x^2}}}{{24}} - \frac{{{y^2}}}{{18}} = 1,$ then a value of $m$ is 

  • [JEE MAIN 2019]

The equation of a tangent to the hyperbola $4x^2 -5y^2 = 20$ parallel to the line $x -y = 2$ is

  • [JEE MAIN 2019]

If angle between asymptotes of hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{3} = 4$ is $\frac{\pi }{3}$, then its conjugate hyperbola is

If the circle $x^2 + y^2 = a^2$  intersects the hyperbola $xy = c^2 $ in four points $ P(x_1, y_1), Q(x_2, y_2), R(x_3, y_3), S(x_4, y_4), $ then