Gujarati
10-2. Parabola, Ellipse, Hyperbola
medium

If the tangent on the point $(2\sec \phi ,\;3\tan \phi )$ of the hyperbola $\frac{{{x^2}}}{4} - \frac{{{y^2}}}{9} = 1$ is parallel to $3x - y + 4 = 0$, then the value of $\phi$ is ............ $^o$

A

$45$

B

$60$

C

$30$

D

$75$

Solution

(c) Differentiation of $x = 2\sec \phi $

==> $\frac{{dx}}{{d\phi }} = 2\sec \phi \tan \phi $

Differentiate, $y = 3\tan \phi $  w.r.t. $\theta$,

we get $\frac{{dy}}{{d\phi }} = 3{\sec ^2}\phi $

$\therefore $Gradient of tangent $\frac{{dy}}{{dx}} = \frac{{dy/d\phi }}{{dx/d\phi }} = \frac{{3{{\sec }^2}\phi }}{{2\sec \phi \tan \phi }}$

$\frac{{dy}}{{dx}} = \frac{3}{2}\,{\rm{cosec}}\phi $ …..$(i)$

But, tangent is parallel to $3x – y + 4 = 0$

$\therefore $Gradient $ m = 3$ …..$(ii)$

By $(i)$ and $(ii),$ $\frac{3}{2}{\rm{cosec}}\phi = 3$

==> ${\rm{cosec}}\phi = 2$,

$\therefore \phi = 30^\circ $.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.