यदि अतिपरवलय $\frac{{{x^2}}}{4} - \frac{{{y^2}}}{9} = 1$ के बिन्दु $(2\sec \phi ,\;3\tan \phi )$ पर स्पर्श $3x - y + 4 = 0$ के समान्तर है, तब $f$  का मान ............. $^o$ है

  • A

    $45$

  • B

    $60$

  • C

    $30$

  • D

    $75$

Similar Questions

अतिपरवलयों के शीर्षों, नाभियों के निर्देशांक, उत्केंद्रता और नाभिलंब जीवा की लंबाई ज्ञात कीजिए

$\frac{y^{2}}{9}-\frac{x^{2}}{27}=1$

यदि किसी अतिपरवलय की नाभि तथा शीर्ष $(0,\; \pm 4)$ तथा $(0,\; \pm 2)$ हों, तो उसका समीकरण होगा  

यदि अतिपरवलय का केन्द्र, शीर्ष तथा नाभि क्रमश: $ (0, 0), (4, 0)$ तथा  $(6, 0)$ हों, तो अतिपरवलय का समीकरण होगा  

अतिपरवलय $xy = a\,(a \ne 0)$ के बिन्दु $(a, 1)$ पर खींची गयी स्पर्श की प्रवणता (slope) होगी

 अतिपरवलय $9{x^2} - 16{y^2} + 18x + 32y - 151 = 0$ का केन्द्र है