If the time period $t$ of the oscillation of a drop of liquid of density $d$, radius $r$, vibrating under surface tension $s$ is given by the formula $t = \sqrt {{r^{2b}}\,{s^c}\,{d^{a/2}}} $ . It is observed that the time period is directly proportional to $\sqrt {\frac{d}{s}} $ . The value of $b$ should therefore be

  • [JEE MAIN 2013]
  • A
    $\frac{3}{4}$
  • B
    $\sqrt 3 $
  • C
    $\frac{3}{2}$
  • D
    $\frac{2}{3}$

Similar Questions

A gas bubble from an explosion under water oscillates with a period proportional of $P^a\,d^b\,E^c$ where $P$ is the static pressure, $d$ is the density of water and $E$ is the energy of explosion. Then $a,\,b$ and $c$ are

According to Newton, the viscous force acting between liquid layers of area $A$ and velocity gradient $\Delta v/\Delta z$ is given by $F = - \eta A\frac{{\Delta v}}{{\Delta z}}$ where $\eta $ is constant called coefficient of viscosity. The dimension of $\eta $ are

  • [AIPMT 1990]

Two quantities $A$ and $B$ have different dimensions. Which mathematical operation given below is physically meaningful

Which of the following is not a dimensionless quantity?

  • [JEE MAIN 2021]

Einstein’s mass-energy relation emerging out of his famous theory of relativity relates mass $(m)$ to energy $(E)$ as  $E = mc^2$, where $c$ is speed of light in vacuum. At the nuclear level, the magnitudes of energy are very small. The energy at nuclear level is usually measured in $MeV$, where $1\,MeV = 1.6\times 10^{-13}\,J$ ; the masses are measured i unified atomicm mass unit (u) where, $1\,u = 1.67 \times 10^{-27}\, kg$

$(a)$ Show that the energy equivalent of $1\,u$ is $ 931.5\, MeV$.

$(b)$ A student writes the relation as $1\,u = 931.5\, MeV$. The teacher points out that the relation  is dimensionally incorrect. Write the correct relation.