If the total charge enclosed by a surface is zero, does it imply that the electric field everywhere on the surface is zero ? Conversely, if the electric field everywhere on a surface is zero, does it imply that net charge inside is zero.
Electric flux $\phi=\oint_{S} \vec{E} \cdot d \vec{S}=\frac{q}{\epsilon_{0}}$
In left side of equation, $\overrightarrow{\mathrm{E}}$ is electric field on the surface by charges inside and outside the surface. But, in right side of equation, $q$ is the charge enclosed by the surface.
It means, if $q=0$, then may $\mathrm{E} \neq 0$ because there may be $\mathrm{E}$ due to charges outside the surface. But, if $\mathrm{E}=0$, then $q=0$.(Charge enclosed by surface)
A spherical conductor of radius $10\, cm$ has a charge of $3.2 \times 10^{-7} \,C$ distributed uniformly. What is the magnitude of electric field at a point $15 \,cm$ from the centre of the sphere?
$\left(\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} Nm ^{2} / C ^{2}\right)$
Consider the force $F$ on a charge $'q'$ due to a uniformly charged spherical shell of radius $R$ carrying charge $Q$ distributed uniformly over it. Which one of the following statements is true for $F,$ if $'q'$ is placed at distance $r$ from the centre of the shell $?$
Let $\rho (r) =\frac{Q}{{\pi {R^4}}}r$ be the charge density distribution for a solid sphere of radius $R$ and total charge $Q$. For a point '$p$' inside the sphere at distance $r_1$ from the centre of the sphere, the magnitude of electric field is
Let there be a spherically symmetric charge distribution with charge density varying as $\rho (r)=\;\rho _0\left( {\frac{5}{4} - \frac{r}{R}} \right)$, upto $r = R$ ,and $\rho (r) = 0$ for $r > R$ , where $r$ is the distance from the origin. The electric field at a distance $r(r < R)$ from the origin is given by
The electric field at a distance $\frac{3R}{2}$ from the centre of a charged conducting spherical shell of radius $R$ is $E.$ The electric field at a distance $\frac{R}{2}$ from the centre of the sphere is