Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

If the variable line $y = kx + 2h$ is tangent to an ellipse $2x^2 + 3y^2 = 6$ , the locus of $P (h, k)$ is a conic $C$ whose eccentricity equals

A

$\frac{{\sqrt 5 }}{2}$

B

$\frac{{\sqrt 7 }}{3}$

C

$\frac{{\sqrt 7 }}{2}$

D

$\sqrt {\frac{7}{3}} $

Solution

By using condition of tangency,

we get $4 \mathrm{h}^{2}=3 \mathrm{k}^{2}+2$

$\therefore $ Locus of $\mathrm{P}(\mathrm{h}, \mathrm{k})$ is $4 \mathrm{x}^{2}-3 \mathrm{y}^{2}=2$ (which is hyperbola.)

Hence $e^{2}=1+\frac{4}{3} \Rightarrow e=\sqrt{\frac{7}{3}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.