An ellipse with its minor and major axis parallel to the coordinate axes passes through $(0,0),(1,0)$ and $(0,2)$. One of its foci lies on the $Y$-axis. The eccentricity of the ellipse is
$\sqrt{3}-1$
$\sqrt{5}-2$
$\sqrt{2}-1$
$\frac{\sqrt{3}-1}{2}$
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the latus rectum of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$
In an ellipse $9{x^2} + 5{y^2} = 45$, the distance between the foci is
The centre of the ellipse$\frac{{{{(x + y - 2)}^2}}}{9} + \frac{{{{(x - y)}^2}}}{{16}} = 1$ is
In a group of $100$ persons $75$ speak English and $40$ speak Hindi. Each person speaks at least one of the two languages. If the number of persons, who speak only English is $\alpha$ and the number of persons who speak only Hindi is $\beta$, then the eccentricity of the ellipse $25\left(\beta^2 x^2+\alpha^2 y^2\right)=\alpha^2 \beta^2$ is $.......$
A man running a racecourse notes that the sum of the distances from the two flag posts from him is always $10 \,m$ and the distance between the flag posts is $8\, m$ Find the equation of the posts traced by the man.