In an ellipse the distance between its foci is $6$ and its minor axis is $8$. Then its eccentricity is
$\frac{4}{5}$
$\frac{1}{{\sqrt {52} }}$
$\frac{3}{5}$
$1\over2$
Eccentricity of the ellipse $9{x^2} + 25{y^2} = 225$ is
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$
A tangent to the ellipse $\frac{x^2}{25}+\frac{y^2}{16}=1$ intersect the co-ordinate axes at $A$ and $B,$ then locus of circumcentre of triangle $AOB$ (where $O$ is origin) is
For an ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ with vertices $A$ and $ A', $ tangent drawn at the point $P$ in the first quadrant meets the $y-$axis in $Q $ and the chord $ A'P$ meets the $y-$axis in $M.$ If $ 'O' $ is the origin then $OQ^2 - MQ^2$ equals to
If $P$ lies in the first quadrant on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ (where $a > b$ ), and tangent & normal drawn at $P$ meets major axis at the points $T$ & $N$ respectively, then the value of $\frac{{\left( {\left| {{F_2}N} \right| + \left| {{F_1}N} \right|} \right)\left( {\left| {{F_2}T} \right| - \left| {{F_1}T} \right|} \right)}}{{\left( {\left| {{F_2}N} \right| - \left| {{F_1}N} \right|} \right)\left( {\left| {{F_2}T} \right| + \left| {{F_1}T} \right|} \right)}}$ is equal to (where $F_1$ & $F_2$ are the foci $(ae, 0)$ & $(-ae, 0)$ respectively)