If two sets $A$ and $B$ have $99$ elements in common, then the number of elements common to the sets $A \times B$ and $B \times A$ is equal to
$2^{99}$
$(99)^2$
$100$
$18$
It is obvious
Let $A$ and $B$ be two sets such that $n(A)=3$ and $n(B)=2 .$ If $(x, 1),(y, 2),(z, 1)$ are in $A \times B$, find $A$ and $B$, where $x, y$ and $z$ are distinct elements.
Let $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\} .$ Verify that
$A \times C$ is a subset of $B \times D$
The solution set of $8x \equiv 6(\bmod 14),\,x \in Z$, are
If $A \times B =\{(p, q),(p, r),(m, q),(m, r)\},$ find $A$ and $B$
State whether each of the following statements are true or false. If the statement is false, rewrite the given statement correctly.
If $A=\{1,2\}, B=\{3,4\},$ then $A \times\{B \cap \varnothing\}=\varnothing$
Confusing about what to choose? Our team will schedule a demo shortly.