Let $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\} .$ Verify that
$A \times(B \cap C)=(A \times B) \cap(A \times C)$
To verify: $A \times(B \cap C)=(A \times B) \cap(A \times C)$
We have $B \cap C=\{1,2,3,4\} \cap\{5,6\}=\varnothing$
$\therefore \mathrm{L .H. S .}=A \times(B \cap C)=A \times \varnothing=\varnothing$
$A \times B=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)\}$
$A \times C=\{(1,5),(1,6),(2,5),(2,6)\}$
$\therefore R H S=(A \times B) \cap(A \times C)=\varnothing$
$\therefore L.H.S.=R.H.S.$
Hence, $A \times(B \cap C)=(A \times B) \cap(A \times C)$
If $A = \{ x:{x^2} - 5x + 6 = 0\} ,\,B = \{ 2,\,4\} ,\,C = \{ 4,\,5\} ,$ then $A \times (B \cap C)$ is
If $A=\{-1,1\},$ find $A \times A \times A.$
Let $A, B, C$ are three sets such that $n(A \cap B) = n(B \cap C) = n(C \cap A) = n(A \cap B \cap C) = 2$, then $n((A × B) \cap (B × C)) $ is equal to -
If two sets $A$ and $B$ are having $99$ elements in common, then the number of elements common to each of the sets $A \times B$ and $B \times A$ are
If $P=\{1,2\},$ form the set $P \times P \times P$