Let $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\} .$ Verify that
$A \times(B \cap C)=(A \times B) \cap(A \times C)$
To verify: $A \times(B \cap C)=(A \times B) \cap(A \times C)$
We have $B \cap C=\{1,2,3,4\} \cap\{5,6\}=\varnothing$
$\therefore \mathrm{L .H. S .}=A \times(B \cap C)=A \times \varnothing=\varnothing$
$A \times B=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)\}$
$A \times C=\{(1,5),(1,6),(2,5),(2,6)\}$
$\therefore R H S=(A \times B) \cap(A \times C)=\varnothing$
$\therefore L.H.S.=R.H.S.$
Hence, $A \times(B \cap C)=(A \times B) \cap(A \times C)$
If $A$ and $B$ are two sets, then $A × B = B × A$ iff
Let $A=\{1,2\}$ and $B=\{3,4\} .$ Write $A \times B .$ How many subsets will $A \times B$ have? List them.
The Cartesian product $A$ $\times$ $A$ has $9$ elements among which are found $(-1,0)$ and $(0,1).$ Find the set $A$ and the remaining elements of $A \times A$.
If the set $A$ has $3$ elements and the set $B=\{3,4,5\},$ then find the number of elements in $( A \times B ).$
If $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right),$ find the values of $x$ and $y$