Let $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\} .$ Verify that
$A \times(B \cap C)=(A \times B) \cap(A \times C)$
To verify: $A \times(B \cap C)=(A \times B) \cap(A \times C)$
We have $B \cap C=\{1,2,3,4\} \cap\{5,6\}=\varnothing$
$\therefore \mathrm{L .H. S .}=A \times(B \cap C)=A \times \varnothing=\varnothing$
$A \times B=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)\}$
$A \times C=\{(1,5),(1,6),(2,5),(2,6)\}$
$\therefore R H S=(A \times B) \cap(A \times C)=\varnothing$
$\therefore L.H.S.=R.H.S.$
Hence, $A \times(B \cap C)=(A \times B) \cap(A \times C)$
Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find
$A \times(B \cup C)$
If the set $A$ has $p$ elements, $B$ has $q$ elements, then the number of elements in $A × B$ is
If $A, B$ and $C$ are any three sets, then $A \times (B \cup C)$ is equal to
If $A = \{1, 2, 4\}, B = \{2, 4, 5\}, C = \{2, 5\},$ then $(A -B) × (B -C)$ is
If $G =\{7,8\}$ and $H =\{5,4,2\},$ find $G \times H$ and $H \times G$.