Let $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\} .$ Verify that

$A \times(B \cap C)=(A \times B) \cap(A \times C)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

To verify: $A \times(B \cap C)=(A \times B) \cap(A \times C)$

We have $B \cap C=\{1,2,3,4\} \cap\{5,6\}=\varnothing$

$\therefore \mathrm{L .H. S .}=A \times(B \cap C)=A \times \varnothing=\varnothing$

$A \times B=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)\}$

$A \times C=\{(1,5),(1,6),(2,5),(2,6)\}$

$\therefore R H S=(A \times B) \cap(A \times C)=\varnothing$

$\therefore L.H.S.=R.H.S.$

Hence, $A \times(B \cap C)=(A \times B) \cap(A \times C)$

Similar Questions

Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find

$(A \times B) \cap(A \times C)$

$A = \{1,2,3,4......100\}, B = \{51,52,53,...,180\}$, then number of elements in $(A \times B) \cap  (B \times A)$ is

If the set $A$ has $3$ elements and the set $B=\{3,4,5\},$ then find the number of elements in $( A \times B ).$

State whether each of the following statements are true or false. If the statement is false, rewrite the given statement correctly.

If $A=\{1,2\}, B=\{3,4\},$ then $A \times\{B \cap \varnothing\}=\varnothing$

If $G =\{7,8\}$ and $H =\{5,4,2\},$ find $G \times H$ and $H \times G$.