Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find
$(A \times B) \cup(A \times C)$
Using the sets $A \times B$ and $A \times C$ from part $(ii)$ above, we obtain
$(A \times B) \cap(A \times C)=\{(1,4),(2,4),(3,4)\}$
$(A \times B) \cup(A \times C)=\{(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)$
$(3,3),(3,4),(3,5),(3,6)\}$
If $A$ and $B$ are two sets, then $A × B = B × A$ iff
State whether each of the following statements are true or false. If the statement is false, rewrite the given statement correctly.
If $A$ and $B$ are non-empty sets, then $A \times B$ is a non-empty set of ordered pairs $(x, y)$ such that $x \in A$ and $y \in B.$
Let $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\} .$ Verify that
$A \times C$ is a subset of $B \times D$
If $A, B$ and $C$ are any three sets, then $A \times (B \cup C)$ is equal to
The solution set of $8x \equiv 6(\bmod 14),\,x \in Z$, are