Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find
$(A \times B) \cup(A \times C)$
Using the sets $A \times B$ and $A \times C$ from part $(ii)$ above, we obtain
$(A \times B) \cap(A \times C)=\{(1,4),(2,4),(3,4)\}$
$(A \times B) \cup(A \times C)=\{(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)$
$(3,3),(3,4),(3,5),(3,6)\}$
Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find
$A \times(B \cap C)$
If $G =\{7,8\}$ and $H =\{5,4,2\},$ find $G \times H$ and $H \times G$.
Let $A=\{1,2\}$ and $B=\{3,4\} .$ Write $A \times B .$ How many subsets will $A \times B$ have? List them.
If $A \times B =\{(p, q),(p, r),(m, q),(m, r)\},$ find $A$ and $B$
If $A = \{ 2,\,4,\,5\} ,\,\,B = \{ 7,\,\,8,\,9\} ,$ then $n(A \times B)$ is equal to