Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find
$(A \times B) \cup(A \times C)$
Using the sets $A \times B$ and $A \times C$ from part $(ii)$ above, we obtain
$(A \times B) \cap(A \times C)=\{(1,4),(2,4),(3,4)\}$
$(A \times B) \cup(A \times C)=\{(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)$
$(3,3),(3,4),(3,5),(3,6)\}$
Let $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\} .$ Verify that
$A \times C$ is a subset of $B \times D$
Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find
$A \times(B \cup C)$
If two sets $A$ and $B$ have $99$ elements in common, then the number of elements common to the sets $A \times B$ and $B \times A$ is equal to
If two sets $A$ and $B$ are having $99$ elements in common, then the number of elements common to each of the sets $A \times B$ and $B \times A$ are
If $A = \{2, 3, 5\}, B = \{2, 5, 6\},$ then $(A -B) × (A \cap B)$ is