Gujarati
Hindi
7.Gravitation
normal

In a certain region of space, the gravitational field is given by $-k/r$ , where $r$ is the distance and $k$ is a constant. If the gravitational potential at $r = r_0$ be $V_0$ , then what is the expression for the gravitational potential $(V)$ ?

A

$k\,log\,(r/r_0)$

B

$k\,log\,(r_0/r)$

C

$V_0\, +\, k\, log\, (r/r_0)$

D

$V_0\, +\, k\, log\, (r_0/r)$

Solution

We know that, the gravitational intensity is equal to the negative of the gradient of potential

i.e., $1=-\frac{d \mathrm{V}}{d r}$

Here, $\mathrm{I}=-\frac{\mathrm{K}}{r} ;$ so $\frac{d \mathrm{V}}{d r}=\frac{\mathrm{K}}{r}$Q

or, $\int_{v_0}^{v} d \mathrm{V}=\int_{r_0}^{0} \frac{\mathrm{K}}{r} d t$

or, $\mathrm{V}-\mathrm{V}_{0}=\mathrm{K} \log \frac{r}{r_{0}}$

or, $\mathrm{V}=\mathrm{V}_{0}+\mathrm{K} \log \frac{r}{r_{0}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.