In a circus, a performer throws an apple towards a hoop held at $45 \,m$ height by another performer standing on a high platform (see figure). The thrower aims for the hoop and throws the apple with a speed of $24 \,m / s$. At the exact moment that the thrower releases the apple, the other performer drops the hoop. The hoop falls straight down. At ............ $m$ height above the ground does the apple go through the hoop?

210672-q

  • [KVPY 2020]
  • A

    $21$

  • B

    $22$

  • C

    $23$

  • D

    $24$

Similar Questions

A projectile is fired at $30^{\circ}$ to the horizontal, The vertical component of its velocity is $80 \;ms ^{-1}$, Its time flight is $T$. What will be the velocity of projectile at $t =\frac{ T }{2}$?

A particle is projected from the ground at an angle of $\theta $ with the horizontal with an initial speed of $u$. Time after which velocity vector of the projectile is perpendicular to the initial velocity is

      Column $-I$

    Angle of projection

    Column $-II$
  $A.$ $\theta \, = \,{45^o}$   $1.$ $\frac{{{K_h}}}{{{K_i}}} = \frac{1}{4}$
  $B.$ $\theta \, = \,{60^o}$   $2.$ $\frac{{g{T^2}}}{R} = 8$
  $C.$ $\theta \, = \,{30^o}$   $3.$ $\frac{R}{H} = 4\sqrt 3 $
  $D.$ $\theta \, = \,{\tan ^{ - 1}}\,4$   $4.$ $\frac{R}{H} = 4$

$K_i :$ initial kinetic energy

$K_h :$ kinetic energy at the highest point

From the ground level, a ball is to be shot with a certain speed. Graph shows the range $(R)$ of the particle versus the angle of projection from horizontal ( $\theta $ ). Values of $\theta _1$ and $\theta _2$ are

Two balls are projected from the same point simultaneously.First ball is projected vertically upwards and the second ball at an angle of projection $60^o$ to the ground level. Both the balls reach the ground simultaneously. The ratio of their velocities are