In a group of $70$ people, $37$ like coffee, $52$ like tea and each person likes at least one of the two drinks. How many people like both coffee and tea?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $C$ denote the set of people who like coffee, and $T$ denote the set of people who like tea

$n(C \cup T)=70, n(C)=37, n(T)=52$

We know that:

$n(C \cup T)=n(C)+n(T)-n(C \cap T)$

$\therefore 70=37+52-n(C \cap T)$

$\Rightarrow 70=89-n(C \cap T)$

$\Rightarrow(C \cap T)=89-70=19$

Thus, $19$ people like both coffee and tea.

Similar Questions

Let $\mathrm{U}$ be the set of all triangles in a plane. If $\mathrm{A}$ is the set of all triangles with at least one angle different from $60^{\circ},$ what is $\mathrm{A} ^{\prime} ?$

In a survey of $60$ people, it was found that $25$ people read newspaper $H , 26$ read newspaper $T, 26$ read newspaper $I, 9$ read both $H$ and $I, 11$ read both $H$ and $T,$ $8$ read both $T$ and $1,3$ read all three newspapers. Find:

the number of people who read exactly one newspaper.

In a Mathematics test, the average marks of boys is $x \%$ and the average marks of girls is $y \%$ with $x \neq y$. If the average marks of all students is $z \%$, the ratio of the number of girls to the total number of students is

  • [KVPY 2017]

In a certain town $25\%$ families own a phone and $15\%$ own a car, $65\%$ families own neither a phone nor a car. $2000$ families own both a car and a phone. Consider the following statements in this regard:

$1$. $10\%$ families own both a car and a phone

$2$. $35\%$ families own either a car or a phone

$3$. $40,000$ families live in the town

Which of the above statements are correct

A college awarded $38$ medals in football, $15$ in basketball and $20$ in cricket. If these medals went to a total of $58$ men and only three men got medals in all the three sports, how many received medals in exactly two of the three sports?