In a regular polygon of $n$ sides, each corner is at a distance $r$ from the centre. Identical charges are placed at $(n - 1)$ corners. At the centre, the intensity is $E$ and the potential is $V$. The ratio $V/E$ has magnitude.
$r$ $n$
$r$ $(n - 1)$
$(n - 1)/r$
$r(n - 1)/n$
In a certain charge distribution, all points having zero potential can be joined by a circle $S$. Points inside $S$ have positive potential and points outside $S$ have negative potential. A positive charge, which is free to move, is placed inside $S$
In a region, if electric field is defined as $\vec E = \left( {\hat i + 2\hat j + \hat k} \right)\,V/m$ , then the potential difference between two points $A (0, 0, 0)$ and $B (2, 3, 4)$ in that region, is ......$V$
Two hollow conducting spheres of radii $R_{1}$ and $R_{2}$ $\left(R_{1}>>R_{2}\right)$ have equal charges. The potential would be:
Electric charges of $+10\,\mu\, C, +5\,\mu\, C, -3\,\mu\, C$ and $+8\,\mu\, C$ are placed at the corners of a square of side$\sqrt 2\,m$ . The potential at the centre of the square is
A conducting sphere of radius $R$ is given a charge $Q.$ The electric potential and the electric field at the centre of the sphere respectively are