Six point charges are placed at the vertices of a regular hexagon of side $a$ as shown. If $E$ represents electric field and $V$ represents electric potential at $O$, then
$E=0$ but $V \neq 0$
$E \neq 0$ but $V=0$
$E=0$ and $V=0$
$E \neq 0$ and $V \neq 0$
An electric charge $10^{-3}\ \mu C$ is placed at the origin $(0, 0)$ of $X-Y$ coordinate system. Two points $A$ and $B$ are situated at $(\sqrt 2 ,\sqrt 2 )$ and $(2, 0)$ respectively. The potential difference between the points $A$ and $B$ will be......$V$
Value of potential at a point due to a point charge is
A point charge of magnitude $+ 1\,\mu C$ is fixed at $(0, 0, 0) $. An isolated uncharged spherical conductor, is fixed with its center at $(4, 0, 0).$ The potential and the induced electric field at the centre of the sphere is
The charge given to a hollow sphere of radius $10\, cm$ is $3.2×10^{-19}\, coulomb$. At a distance of $4\, cm$ from its centre, the electric potential will be
Consider a sphere of radius $R$ with uniform charge density and total charge $Q$. The electrostatic potential distribution inside the sphere is given by $\theta_{(r)}=\frac{Q}{4 \pi \varepsilon_{0} R}\left(a+b(r / R)^{C}\right)$. Note that the zero of potential is at infinity. The values of $(a, b, c)$ are