In a satellite if the time of revolution is $T$, then $P E$ is proportional to ..........
$T^{1 / 3}$
$T^3$
$T^{-2 / 3}$
$T^{-4 / 3}$
A satellite of mass $m$ is at a distance $a$ from $a$ star of mass $M$. The speed of satellite is $u$. Suppose the law of universal gravity is $F = - G\frac{{Mm}}{{{r^{2.1}}}}$ instead of $F = - G\frac{{Mm}}{{{r^2}}}$, find the speed of the statellite when it is at $a$ distance $b$ from the star.
If the acceleration due to gravity at earth is $'g'$ and mass of earth is $80$ times that of moon and radius of earth is $4$ times that of moon, the value of acceleration due to gravity at the surface of moon will be
A satellite $S$ is moving in an elliptical orbit around the earth. The mass of the satellite is very small compared to the mass of the earth
A satellite of mass $m$ is in a circular orbit of radius $2R_E$ about the earth. The energy required to transfer it to a circular orbit of radius $4R_E$ is (where $M_E$ and $R_E$ is the mass and radius of the earth respectively)
A body of mass $m$ is lifted up from the surface of the earth to a height three times the radius of the earth. The change in potential energy of the body is
where $g$ is acceleration due to gravity at the surface of earth.