- Home
- Standard 11
- Physics
7.Gravitation
normal
Suppose the gravitational force varies inversely as the $n^{th}$ power of distance. Then the time period of a planet in circular orbit of radius $R$ around the sun will be proportional to
A
${R^{\left( {\frac{{n + 1}}{2}} \right)}}$
B
${R^{\left( {\frac{{n - 1}}{2}} \right)}}$
C
$R^n$
D
${R^{\left( {\frac{{n - 2}}{2}} \right)}}$
Solution
(c) $F=K R^{-n}=M R \omega^{2} \Rightarrow \omega^{2}=K R^{-n+1}$
or $\omega=K \frac{R^{(n+1)}}{2}$
$\frac{2 \pi}{T} \propto R^{-\frac{n+1}{2}} \therefore T \propto R^{+\frac{n+1}{2}}$
Standard 11
Physics
Similar Questions
normal