7.Alternating Current
medium

In a series $L R$ circuit $X_{L}=R$ and power factor of the circuit is $P _{1}$. When capacitor with capacitance $C$ such that $X _{ L }= X _{ C }$ is put in series, the power factor becomes $P_{2}$. The ratio $\frac{ P _{1}}{ P _{2}}$ is

A

$\frac{1}{2}$

B

$\frac{1}{\sqrt{2}}$

C

$\frac{\sqrt{3}}{\sqrt{2}}$

D

$2: 1$

(JEE MAIN-2022)

Solution

In case of $L-R$ circuit

$Z=\sqrt{ X _{ L }^{2}+ R ^{2}} \&$ power factor

$P _{1}=\cos \phi=\frac{ R }{ Z }$

$\text { As } X _{ L }= R$

$\Rightarrow Z =\sqrt{2} R$

$\Rightarrow P _{1}=\frac{ R }{\sqrt{2} R } \Rightarrow P _{1}=\frac{1}{\sqrt{2}}$

In case of $L-C-R$ circuit

$Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$

As $X_{L}=X_{C}$

$\Rightarrow Z=R$

$\Rightarrow P _{2}=\cos \phi=\frac{ R }{ R }=1$

$\Rightarrow \frac{ P _{1}}{ P _{2}}=\frac{1}{\sqrt{2}}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.