The mean and standard deviation of some data for the time taken to complete . a test are calculated with the following results:

Number of observations $=25,$ mean $=18.2$ seconds, standard deviation $=3.25 s$

Further, another set of 15 observations $x_{1}, x_{2}, \ldots, x_{15},$ also in seconds, is now available and we have $\sum_{i=1}^{15} x_{i}=279$ and $\sum_{i=1}^{15} x_{i}^{2}=5524 .$ Calculate the standard deviation based on all 40 observations.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Given, $n_{1}=25, \bar{x}_{i}=18.2, \sigma_{1}=3.25$

$n_{2}=15, \sum_{i=1}^{15} x_{i}=279$ and $\sum_{i=1}^{15} x_{i}^{2}=5524$

For first set $\Sigma x_{i}=25 \times 18.2=455$

$\therefore$

$\sigma_{1}^{2}=\frac{\Sigma x_{i}^{2}}{25}-(18.2)^{2}$

$\Rightarrow \quad(3.25)^{2}=\frac{\Sigma x_{i}^{2}}{25}-(18.2)^{2} \Rightarrow 10.5625+331.24=\frac{\Sigma x_{i}^{2}}{25}$

$\Rightarrow \quad \Sigma x_{i}^{2}=25 \times(10.5625+331.24)=25 \times 341.8025=8545.0625$

For combined SD of the 40 observations, $n=40$.

Now $\quad \sum_{i=1}^{40} x_{i}^{2}=5524+8545.0625=14069.0625$

and $\quad \sum_{i=1}^{40} x_{i}=455+279=734$

$\therefore \quad SD =\sqrt{\frac{14069.0625}{40}-\left(\frac{734}{40}\right)^{2}}=\sqrt{351.1726-(18.35)^{2}}$

$=\sqrt{351.726-336.7225}=\sqrt{15.0035}=3.87$

Similar Questions

From a lot of $12$ items containing $3$ defectives, a sample of $5$ items is drawn at random. Let the random variable $\mathrm{X}$ denote the number of defective items in the sample. Let items in the sample be drawn one by one without replacement. If variance of $X$ is $\frac{m}{n}$, where $\operatorname{gcd}(m, n)=1$, then $n-m$ is equal to..........

  • [JEE MAIN 2024]

If the mean and variance of the data $65,68,58,44$, $48,45,60, \alpha, \beta, 60$ where $\alpha>\beta$ are $56$ and $66.2$ respectively, then $\alpha^2+\beta^2$ is equal to

  • [JEE MAIN 2024]

In an experiment with $15$ observations on $x$, the following results were available $\sum {x^2} = 2830$, $\sum x = 170$. On observation that was $20$ was found to be wrong and was replaced by the correct value $30$. Then the corrected variance is..

  • [AIEEE 2003]

If the variance of the following frequency distribution is $50$ then $x$ is equal to:

Class $10-20$ $20-30$ $30-40$
Frequency $2$ $x$ $2$

  • [JEE MAIN 2020]

The mean and standard deviation of a group of $100$ observations were found to be $20$ and $3,$ respectively. Later on it was found that three observations were incorrect, which were recorded as $21,21$ and $18 .$ Find the mean and standard deviation if the incorrect observations are omitted.