Let in a series of $2 n$ observations, half of them are equal to $a$ and remaining half are equal to $-a.$ Also by adding a constant $b$ in each of these observations, the mean and standard deviation of new set become $5$ and $20 ,$ respectively. Then the value of $a^{2}+b^{2}$ is equal to ....... .
$425$
$650$
$250$
$925$
Let $X=\{11,12,13, \ldots ., 40,41\}$ and $Y=\{61,62$, $63, \ldots ., 90,91\}$ be the two sets of observations. If $\bar{x}$ and $\bar{y}$ are their respective means and $\sigma^2$ is the variance of all the observations in $X \cup Y$, then $\left|\overline{ x }+\overline{ y }-\sigma^2\right|$ is equal to $.................$.
Find the mean and variance for the first $10$ multiples of $3$
Let the mean and standard deviation of marks of class $A$ of $100$ students be respectively $40$ and $\alpha( > 0)$, and the mean and standard deviation of marks of class $B$ of $n$ students be respectively $55$ and $30-\alpha$. If the mean and variance of the marks of the combined class of $100+ n$ students are respectively $50$ and $350$,then the sum of variances of classes $A$ and $B$ is
If the mean deviation about the mean of the numbers $1,2,3, \ldots ., n$, where $n$ is odd, is $\frac{5(n+1)}{n}$, then $n$ is equal to
The mean of $5$ observations is $4.4$ and their variance is $8.24$. If three observations are $1, 2$ and $6$, the other two observations are