- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
easy
If $\left| {\,\begin{array}{*{20}{c}}a&b&{a + b}\\b&c&{b + c}\\{a + b}&{b + c}&0\end{array}\,} \right| = 0$; then $a,b,c$ are in
A
$A. P.$
B
$G. P.$
C
$H. P.$
D
None of these
Solution
(b) Let $a,b,c$ are in $G.P.$ and assume $ a=1,b=2,c=4 $
$\therefore \,\,\,\,\,A = \left| {\,\begin{array}{*{20}{c}}1&2&3\\2&4&6\\3&6&0\end{array}\,} \right|\,\, = \,\,0$ .
Standard 12
Mathematics