- Home
- Standard 11
- Physics
In a vernier callipers, $10$ divisions of vernier scale coincides with $9$ divisions of main scale, the least count of which is $0.1\,cm$. If in the measurement of inner diameter of cylinder zero of vernier scale lies between $1.3\,cm$ and $1.4\, cm$ of main scale and $2^{nd}$ division of vernier scale coincides with main scale division then diameter will be .......... $cm$
$1.30$
$1.34$
$1.32$
$1.36$
Solution
$\mathrm{L} \mathrm{C} =1 \mathrm{MSD}-1 \mathrm{VSD}$
$=1 \mathrm{MSD}-\frac{9}{10} \mathrm{MSD}$
$=\left(1-\frac{9}{10}\right) \times 1 \mathrm{MSD}$ $\left[\begin{array}{l}{\text { Also }} \\ {10 \mathrm{VSD}=9 \mathrm{MSD}} \\ {1 \mathrm{VSD}=\frac{9}{10} \mathrm{MSD}}\end{array}\right]$
$=0.1 \times 0.1 \mathrm{cm}$
$=0.01\,cm$
$Diameter=MSR+LC \times VSR$
$=1.3+0.01 \times 2$
$=1.3+0.02=1.32 \mathrm{cm}$