- Home
- Standard 11
- Physics
Least count of a vernier caliper is $\frac{1}{20 \mathrm{~N}} \mathrm{~cm}$. The value of one division on the main scale is $1 \mathrm{~mm}$. Then the number of divisions of main scale that coincide with $\mathrm{N}$ divisions of vernier scale is :
$\left(\frac{2 \mathrm{~N}-1}{20 \mathrm{~N}}\right)$
$\left(\frac{2 \mathrm{~N}-1}{2}\right)$
$(2 \mathrm{~N}-1)$
$\left(\frac{2 \mathrm{~N}-1}{2 \mathrm{~N}}\right)$
Solution
Least count of vernier calipers $=\frac{1}{20 \mathrm{~N}} \mathrm{~cm}$
$\because$ Least count$=1 \mathrm{MSD}-1 \mathrm{VSD}$
let $\mathrm{x}$ no. of divisions of main scale coincides with $\mathrm{N}$ division of vernier scale, then
$1 \mathrm{VSD}=\frac{\mathrm{x} \times 1 \mathrm{~mm}}{\mathrm{~N}}$
$\therefore \frac{1}{20 \mathrm{~N}} \mathrm{~cm}=1 \mathrm{~mm}-\frac{\mathrm{x} \times 1 \mathrm{~mm}}{\mathrm{~N}}$
$\frac{1}{2 \mathrm{~N}} \mathrm{~mm}=1 \mathrm{~mm}-\frac{\mathrm{x}}{\mathrm{N}} \mathrm{mm}$
$\mathrm{x}=\left(1-\frac{1}{2 \mathrm{~N}}\right) \mathrm{N}$
$\mathrm{x}=\frac{2 \mathrm{~N}-1}{2}$