- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
easy
The line $x\cos \alpha + y\sin \alpha = p$ will be a tangent to the conic $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, if
A
${p^2} = {a^2}{\sin ^2}\alpha + {b^2}{\cos ^2}\alpha $
B
${p^2} = {a^2} + {b^2}$
C
${p^2} = {b^2}{\sin ^2}\alpha + {a^2}{\cos ^2}\alpha $
D
None of these
Solution
(c) $y = – x\cot \alpha + \frac{p}{{\sin \alpha }}$ is
tangent to $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,$
if $\frac{p}{{\sin \alpha }} = \pm \sqrt {{b^2} + {a^2}{{\cot }^2}\alpha } $
or ${p^2} = {b^2}{\sin ^2}\alpha + {a^2}{\cos ^2}\alpha $.
Standard 11
Mathematics