In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If $x \in A$ and $A \in B,$ then $x \in B$
False
Let $A=\{1,2\}$ and $B=\{1,\{1,2\},\{3\}\}$
Now, $2 \in\{1,2\}$ and $\{1,2\}$ $\in\{\{3\}, 1,\{1,2\}\}$
$\therefore A \in B$
Howerer, $2 \notin\{\{3\}, 1,\{1,2\}\}$
Let $A=\{1,2,3,4,5,6\} .$ Insert the appropriate symbol $\in$ or $\notin$ in the blank spaces:
$10 \, .........\, A $
In the following state whether $\mathrm{A = B}$ or not :
$A = \{ 2,4,6,8,10\} ;B = \{ x:x$ is positiveeven integer and $x\, \le \,10\} $
If $Q = \left\{ {x:x = {1 \over y},\,{\rm{where \,\,}}y \in N} \right\}$, then
Let $S=\{1,2,3,4\}$. The total number of unordered pairs of disjoint subsets of $S$ is equal to
Which of the following is a true statement