આપેલ સૂત્ર $P = El^2m^{-5}G^{-2}$ માં $E$, $l$, $m$ અને $G$ અનુક્રમે ઊર્જા, કોણીય વેગમાન, દ્રવ્યમાન અને ગુરુત્વાકર્ષી અચળાંક છે, તો $P$ એ પરિમાણરહિત રાશિ છે તેમ દર્શાવો.
${S_t} = u + \frac{1}{2}a(2t - 1)$ સમીકરણમાં બધી સંજ્ઞા પોતાની મૂળભૂત રાશિ દર્શાવે છે. આપેલ સમીકરણ .....
એક વાસ્તવિક વાયુ માટે અવસ્થા સમીકરણ $\left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{V}^2}\right)(\mathrm{V}-\mathrm{b})=\mathrm{RT}$ થી આપવામાં આવે છે જયાં $\mathrm{P}, \mathrm{V}$ અને
$T$ એ અનુક્મે દબાણ, કદ અને તાપમાન, અને $\mathrm{R}$ એ સાર્વત્રિક વાયુ અચળાંક છે. $\frac{\mathrm{a}}{\mathrm{b}^2}$ નું પરિમાણ_______ના જેવું છે.
એક લાક્ષણિક દહનશીલ એન્જીન (કંબશન એન્જીન) માં વાયુનાં અણુ દ્વારા થયેલ કાર્યને $W=\alpha^{2} \beta e^{\frac{-\beta x^{2}}{k T}}$ દ્વારા આપવામાં આવે છે જ્યાં $x$ સ્થાનાંતર, $k$ બોલ્ટ્ઝમેન અચળાંક અને $T$ તાપમાન દર્શાવે છે. જો $\alpha$ અને $\beta$ અચળાંકો હોય, તો $\beta$ નું પરિમાણ ......... હશે.