- Home
- Standard 11
- Physics
1.Units, Dimensions and Measurement
medium
સમીકરણ $y=x^2 \cos ^2 2 \pi \frac{\beta \gamma}{\alpha}$ માં, $x, \alpha, \beta$ ના એકમો અનુક્રમે $m , s ^{-1}$ અને $\left( ms ^{-1}\right)^{-1}$ છે. $y$ અને $r$ ના એકમો ક્યા છે?
A$m ^2, ms ^{-2}$
B$m , ms ^{-1}$
C$m^2, m$
D$m , ms ^{-2}$
Solution
(a)
$y=x^2 \cos ^2 2 \pi\left(\frac{\beta \gamma}{\alpha}\right)$
The argument of a trigonometric ratio is always dimensionless.
$\frac{\beta \gamma}{\alpha}=\left[ M ^0 L ^0 T ^0\right] \text { or } \beta \gamma=\alpha \Rightarrow \gamma=\frac{ T }{ L ^2}$
$\text { and } y=x^2 \Rightarrow\left[ L ^2\right]$
$\alpha= s ^{-1} \Rightarrow\left[ T ^{-1}\right], \beta=\left[ LT ^{-1}\right]^{-1} \Rightarrow\left[ L ^{-1} T \right]$
$y=m^2$
$\gamma= ms ^{-2}$
$y=x^2 \cos ^2 2 \pi\left(\frac{\beta \gamma}{\alpha}\right)$
The argument of a trigonometric ratio is always dimensionless.
$\frac{\beta \gamma}{\alpha}=\left[ M ^0 L ^0 T ^0\right] \text { or } \beta \gamma=\alpha \Rightarrow \gamma=\frac{ T }{ L ^2}$
$\text { and } y=x^2 \Rightarrow\left[ L ^2\right]$
$\alpha= s ^{-1} \Rightarrow\left[ T ^{-1}\right], \beta=\left[ LT ^{-1}\right]^{-1} \Rightarrow\left[ L ^{-1} T \right]$
$y=m^2$
$\gamma= ms ^{-2}$
Standard 11
Physics