તારનો યંગ મોડયુલસ $Y = \frac{FL}{A\Delta L};$ જયાં $ L=$ લંબાઇ, $A= $ આડછેદનું ક્ષેત્રફળ અને $ \Delta L = $ લંબાઇમાં થતો ફેરફાર, તો $CGS$ માંથી $MKS$ માં જવા માટે .............. $10^{-1} \mathrm{N/m}^{2}$ વડે ગુણાકાર કરવો પડે?

  • A
    $100$
  • B
    $10$
  • C
    $1$
  • D
    $0.01$

Similar Questions

ન્યુટનના મત અનુસાર, $A$ ક્ષેત્રફળવાળા અને $\Delta v/\Delta z$ જેટલું વેગ-પ્રચલન ધરાવતાં પ્રવાહીના બે સ્તરો વચ્ચે લાગતું શ્યાનતા બળ $F = - \eta A\frac{{\Delta v}}{{\Delta z}}$ છે, જ્યાં $\eta $ શ્યાનતા ગુણાંક છે. $\eta$ નું પારિમાણિક સૂત્ર શું થાય?

  • [AIPMT 1990]

કણની સ્થિતિઉર્જા અંતર $x$ સાથે $U\, = \,\frac{{A\sqrt x }}{{{x^2} + B}}$ મુજબ બદલાય છે. જ્યાં $A$ અને $B$ પરિમાણ ધરાવતા અચળાંક છે. તો $A/B$ નું પારિમાણિક સૂત્ર શું થાય?

વિધેય $f(\theta )\, = \,1\, - \theta  + \frac{{{\theta ^2}}}{{2!}} - \frac{{{\theta ^3}}}{{3!}} + \frac{{{\theta ^4}}}{{4!}} + ...$ વ્યાખ્યાયિત થાય છે તો $f(\theta )$ એ પરિમાણરહિત રાશિ હોવાથી જરૂરિયાત શું છે ?

માર્શિયન પધ્ધતિમાં બળ $(F)$, પ્રવેગ $(A)$ અને સમય $(T)$ ને મૂળભૂત રાશિ લેવામાં આવે તો માર્શિયન પધ્ધતિમાં લંબાઇનું પારિમાણિક સૂત્ર શું થાય?

જો મુક્ત અવકાશની પરમિટીવીટી $\varepsilon_0$ પ્રોટોનનો વિદ્યુતભાર $e$ સાર્વત્રિક ગુરૂત્વાકર્ષણ અચળાંક $G$ અને પ્રોટોનનું દળ $m_p$ હોય તો $\frac{e^2}{4 \pi \varepsilon_0 G m_p{ }^2}$ માટે