In steady state heat conduction, the equations that determine the heat current $j ( r )$ [heat flowing per unit time per unit area] and temperature $T( r )$ in space are exactly the same as those governing the electric field $E ( r )$ and electrostatic potential $V( r )$ with the equivalence given in the table below.
Heat flow | Electrostatics |
$T( r )$ | $V( r )$ |
$j ( r )$ | $E ( r )$ |
We exploit this equivalence to predict the rate $Q$ of total heat flowing by conduction from the surfaces of spheres of varying radii, all maintained at the same temperature. If $\dot{Q} \propto R^{n}$, where $R$ is the radius, then the value of $n$ is
$2$
$1$
$-1$
$-2$
A wheel having mass $m$ has charges $+q $ and $-q$ on diametrically opposite points. It remains in equilibrium on a rough inclined plane in the presence of uniform vertical electric field $E =$
The electric potential $V$ at any point $(x, y, z)$ (all in $metres$ ) in space is given by $V = 4x^2\, volt$. The electric field at the point $(1\, m, 0, 2\, m)$ in $volt/metre$ is
A point charge $q$ is situated at a distance $d$ from one end of a thin non - conducting rod of length $L$ having a charge $Q$ (uniformly distributed along its length) as shown in fig.Then the magnitude of electric force between them is
Five balls marked a to $e$ are suspended using separate threads. Pairs $(b, c)$ and $(d, e)$ show electrostatic repulsion while pairs $(a, b),(c, e)$ and $(a, e)$ show electrostatic attraction. The ball marked a must be
A square plate of side $'a'$ is placed in $xy$ plane having centre at origin if charge density of square plate is $\sigma = xy$ then. Total charge on the plate will be.