In the binomial expansion of ${\left( {a - b} \right)^n},n \ge 5,\;$ the sum of $5^{th}$ and $6^{th}$ terms is zero , then $a/b$ equals.

  • [AIEEE 2007]
  • [IIT 2001]
  • A

    $\frac{{n - 5}}{6}$

  • B

    $\frac{{n - 4}}{5}$

  • C

    $\;\frac{5}{{n - 4}}$

  • D

    $\;\frac{6}{{n - 5}}$

Similar Questions

Sum of co-efficients of terms of degree $m$  in the expansion of $(1 + x)^n(1 + y)^n(1 + z)^n$ is

The smallest natural number $n,$ such that the coefficient of $x$ in the expansion of ${\left( {{x^2}\, + \,\frac{1}{{{x^3}}}} \right)^n}$ is $^n{C_{23}}$ is

  • [JEE MAIN 2019]

The middle term in the expansion of ${(1 + x)^{2n}}$ is

The positive value of $a$ so that the co-efficient of $x^5$ is equal to that of $x^{15}$ in the expansion of ${\left( {{x^2}\,\, + \,\,\frac{a}{{{x^3}}}} \right)^{10}}$ is

Let $\alpha>0, \beta>0$ be such that $\alpha^{3}+\beta^{2}=4 .$ If the maximum value of the term independent of $x$ in the binomial expansion of $\left(\alpha x^{\frac{1}{9}}+\beta x^{-\frac{1}{6}}\right)^{10}$ is $10 k$ then $\mathrm{k}$ is equal to

  • [JEE MAIN 2020]