The term independent of $x$ in the expression of $\left(1-x^{2}+3 x^{3}\right)\left(\frac{5}{2} x^{3}-\frac{1}{5 x^{2}}\right)^{11}, x \neq 0$ is

  • [JEE MAIN 2022]
  • A

    $\frac{7}{40}$

  • B

    $\frac{33}{200}$

  • C

    $\frac{39}{200}$

  • D

    $\frac{11}{50}$

Similar Questions

The coefficient of ${x^{ - 9}}$ in the expansion of ${\left( {\frac{{{x^2}}}{2} - \frac{2}{x}} \right)^9}$ is

If the non zero coefficient of $(2r + 4)th$ term is greater than non zero coefficient of $(r - 2)th$ term in expansion of $(1 + x)^{18}$, then number of possible integral values of $r$ is

Find $a$ if the coefficients of $x^{2}$ and $x^{3}$ in the expansion of $(3+a x)^{9}$ are equal.

The middle term in the expression of ${\left( {x - \frac{1}{x}} \right)^{18}}$ is

Let $\mathrm{m}$ and $\mathrm{n}$ be the coefficients of seventh and thirteenth terms respectively in the expansion of $\left(\frac{1}{3} \mathrm{x}^{\frac{1}{3}}+\frac{1}{2 \mathrm{x}^{\frac{2}{3}}}\right)^{18}$. Then $\left(\frac{\mathrm{n}}{\mathrm{m}}\right)^{\frac{1}{3}}$ is :

  • [JEE MAIN 2024]