${\left( {x - \frac{3}{{{x^2}}}} \right)^9}$ के विस्तार में $x$ से स्वतंत्र पद होगा
अस्तित्वहीन
$^9{C_2}$
$2268$
$-2268$
${\left( {x + \frac{2}{{{x^2}}}} \right)^{15}}$ के प्रसार में $x$ से स्वतंत्र पद है
यदि ${(1 + x)^{14}}$ के विस्तार में ${T_r},\,{T_{r + 1}},\,{T_{r + 2}}$ के गुणांक समांतर श्रेणी में हों, तो $r = $
${\left( {\frac{a}{x} + bx} \right)^{12}}$ के विस्तार में $x^{-10}$ का गुणांक होगा
${(1 + x)^{2n}}$ के प्रसार में महत्तम पद का गुणांक भी महत्तम होने के लिये $x$ का मान निम्न अन्तराल में आता है
यदि ${\left\{ {{2^{{{\log }_2}\sqrt {({9^{x - 1}} + 7)} }} + \frac{1}{{{2^{(1/5){{\log }_2}({3^{x - 1}} + 1)}}}}} \right\}^7}$ के प्रसार में छठवां पद $84$ है, तब $x$ का मान है